US 2005/0005261 Al

[0251] For example, a neural network can change the
connections between nodes and the values assigned to the
connections between nodes, but can never change the back-
propagation rules that define how those values are deter-
mined. A genetic algorithm can create new genes and
determine which genes are dominant, but cannot create a
neural network. A logic program can combine existing logic
to arrive at more powerful logical constructs, but cannot
suddenly decide to represent these logical constructs as
graphical representations (unless the programmer has
already added this capability).

[0252] A program that describes itself (meta-implementa-
tion layer), describes its reason for existing in that manner
(metamodel layer), and allows implementation to change
dynamically (virtual implementation) lacks only the logic to
do so. If a sufficiently powerful reasoning engine (neural
network, genetic algorithm, or logic engine), were applied to
such a language on a sufficiently powerful computer, such a
program would be capable of rewriting itself to achieve the
goals defined in the reasoning engine. A user could define
these goals or these goals may be the result of operations
conducted by the reasoning engine itself.

[0253] Virtual implementations of the present invention
also allows for programming by contract functionality. For
example, to enforce a contract asserting an operation cannot
change any attributes of a parameter, a parameter imple-
mentation can create a read-only pass-through model and
give that model to the operation. Even if the operation
attempts to make a change to the parameter’s attributes, it
will fail because of the read-only protection. The operation
can still perform all the normal read operations, since the
read-only pass-through simply delegates read operations to
the real parameter model. Not all programming languages
have sufficient complexity to enforce contractual constraints
like this one. Since a virtual implementation has access to its
own description and behaves as an extensible language, it
can add new functionality to enforce contract-programming
ideas.

[0254] A virtual implementation of the present invention
also allows for aspect programming. Due to the limited
number of virtual implementation interfaces, it is possible to
create a wrapper virtual implementation for each interface to
add new aspects to all implementations. Adding new func-
tionality to all aspects of a program is sometimes referred to
as aspect programming. New aspects (like logging all
attribute value changes) can be added systematically at
runtime.

[0255] The meta-implementation layer of the present
invention may blend parts of a virtual implementation with
parts of other meta-implementations through the use of
accessors. By selecting a virtual implementation for the
model, then selecting accessors for database storage and
accessors for compiled C++ source code, a meta-implemen-
tation can combine the advantages of each type of imple-
mentation to achieve the best balance of performance,
flexibility, and maintenance.

[0256] As long as the appropriate accessors exist, the
virtual model implementation can store its attributes in
locations other than virtual attribute implementations and
can perform operations in ways other than virtual operation
implementations. This allows the virtual object to serve as a
placeholder in the tool using the virtual implementation,
while performing “non-virtual” data manipulation.

Jan. 6, 2005

[0257] An example system might use meta-implementa-
tions to store all attributes data in a database. The constructor
accessors would require enough information to create a
record in a database and retrieve a primary key. The primary
and foreign keys for this database record are stored in a
virtual instance. All attribute changes to the virtual object are
actually updates to the database, using the virtual instance to
retrieve the primary key for the where clause. Most opera-
tion calls are stored procedure calls implemented as data-
base-operation accessors. Some operation accessors may
calls compiled C++ code written as part of a legacy system.
These operation implementations perform calculations
related to the data stored in the attributes. In order to make
this system available over the Internet, a Java Servlet,
Python module, or IIS plugin is used to access this meta-
implementation layer and produce HTML.

[0258] Another approach to blending multiple different
languages together is to create virtual implementations that
are really references to a meta-implementation accessor.
This allows the “true” meta-implementation layer to always
point to a virtual implementation. Whenever functionality is
needed in from a non-virtual implementation, an accessor
implementation is used. This implementation simply del-
egates its responsibilities to a different meta-implementation
provider.

[0259] For example, a virtual operation may contain sev-
eral sub-operations. One of these sub-operations is an Acces-
sorOperationlmplementation that passes values to database-
specific accessor to call a stored procedure. The
Operationlmplementation behaves exactly as the virtual
operation expects, but performs its logic in the database.
This is analogous to embedded SQL in a programming

language.

[0260] In fact, more languages are being embedded into
each other in today’s development environment. Generally
the embedded language is treated in such a way that the
language into which it is embedded is unaware of it.
Language integration allows all meta-implementations to
interact with each other, fully aware of each other, but
unconcerned about the specifics of implementation. Some of
the most extreme cases of embedding languages into each
other come from Active Server Pages (ASP) and Java Server
Pages (JSP).

[0261] Both of these template-design languages contain a
language that is executed on the server (Java for JSP, Visual
Basic for ASP). This code can retrieve data from a database
using embedded SQL. The results of that SQL query are
translated to XML in order to be formatted by an XML Style
sheet Language Template (XSLT). The XSLT produces an
HTML document containing Cascading Style Sheets for
style, HTML for content and markup, and JavaScript for
dynamic content. The resulting ASP (or JSP) page contains
all six languages in a single file: VB, SQL, XSLT, HTML,
JavaScript, and CSS! While there are certainly better ways
of performing this type of operation, it occurs frequently
enough to warrant serious attention. Accessor implementa-
tions allow the mixing of an unlimited number of languages
(and non-language software paradigms), as long as a meta-
implementation accessor exists for each one. Each meta-
implementation has its language completely separated while
being integrated through the meta-implementation accessor
interfaces and model descriptors.



